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LETTER TO THE EDITOR

Affine Hecke algebra, Macdonald polynomials, and
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Tokyo 113, Japan
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Abstract. The Macdonald operators associated with the classical root systems are constructed
based on the infinite-dimensional representation for solutions of the Yang—Baxter equation and
the reflection equation.

There has been renewed interest in thdeformed orthogonal polynomials related with
guantum groups. One of the famous orthogonal polynomials is the Macdonald polynomial
associated with root systems [1]. Some polynomials, such as the Rogers—Askey—Ismail
polynomial and the Askey—Wilson polynomial [2], can be regarded as special cases of the
Macdonald polynomial. The A_i-type Macdonald polynomial is an eigenfunction of
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where the shift operator is defined as

L)z ) = FCopzj ).

On the other hand the BCi-type Macdonald operator (or, Macdonald—Koornwinder
operator) is defined as the difference operator

N N
MEC =3 (B -+ Yy w37 -1 )
=1 =1

where we set
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Note that we have five arbitrary parameterss, b,c,d, p}. The polynomial as
eigenfunctions for this difference operator is introduced as a generalization of the Askey—
Wilson polynomial.

Recently the relationship between the Macdonald polynomial and the affine Hecke
algebra has been revealed [3,4]. The Macdonald operators are constructed as the quantum
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Knizhnik—Zamolodchikov type operator. In this letter, the Macdonald operators are studied
based on solutions of the Yang—Baxter equation and the reflection equation. We give
the infinite-dimensional representation for solutions, and construct the integrable difference
operator associated with the classical root systems.

Let us consider solutions of the Yang—Baxter equation (YBE) and the reflection equation
(RE, or boundary Yang—Baxter equation), which are respectively written as

RY¥(01/62) R*3(61/63) R%(62/63) = R*(62/63) R™(61/63) R*(61/62) (3)
R™¥(01/62) (K (61) ® D)R? (6162) (1 ® K (62))
= (1® K (62)) R*(6162) (K (61) ® 1)R?*(61/62). 4)

Here ¢; are called the spectral parameters. The YBE is an elementary tool to investigate
integrable systems (see, [5-7]). The RE is used to formulate integrable systems with
boundary [8]. As a solution of the YBE and RE, we use the operator-valued solution as the
‘infinite-dimensional’ representation [9—13]; bothand K are regarded as operators acting

on the functional spac¢(z1, ..., zy). Although elliptic solutions are explicitly given, we
only study the trigopnometric solutions as degenerate casesRIdperator is defined by

; -1 N A
R*©0) = v G 2 Sk (5)
wheregq is an arbitrary parameter, argdis the Demazure—Lusztig (DL) operator
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It is noted that the operatdy}, exchanges coordinates
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As solutions for the RE (4) associated with the above trigonométraperator (5), there
are two solutionskK and K [12]:

Kj(e) = mwzf_i - fj_l) (7a)
. S ~—1
where parameterg andb are arbitrary, and we define the DL operatéras
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Operator? is a reflection operator, which acts on a functional space as
GGz )= flzh ).

These two solutions correspond to a reflection at the boundary associated with the Weyl
group of type B and type C, respectively.
We note several identities for the DL operators, which may be directly checked:

8. j+18j+1j+28j.j+1 = &j+1j+28).j+18j+1.j+2 (93)
G+a)@—-qgH=0 (%)
Fi8j.j+17j&j j+1 = &j.j+175 &), j+17) (90)

F—a)F+at)=0. (9d)
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Both operatorg and7 satisfy the Hecke relations. We have the same identities for operator
r. Using the DL operators, we can define sets of integrable difference operators, which
have the same structure with the quantum Knizhnik—Zamolodchikov (qKZ) operators [14]:

A A A A | Al Al A A A
D; =gjj-18-1j-2---821 - T1 8 N8N N-18N-1N-2- - &12 j+15LNSLN-1... 512 (10)
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(11)

We can see from the YBE (3) and RE (4) that they constitute commuting families,

[D;, D] =0 (12)

[¥Y,,%]=0 for¥,,=1,...,N. (13)
The gKZ operators are shown to satisfy the following relations:

§j+1,ji)j§j+l,j = bj+1
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We remark that algebra constructed from opera((bA);s gi+1;lj =1,..., N} is called as

the degenerate affine Hecke algebra of type A while algebra fiQng; .1 ;, 71717 %, Fa)
as algebra of type BC. Commuting difference operators give us sets of integrable difference
operators:

N
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In the rest of this letter we shall clarify that two sets of opera(aﬁ'ﬂj =1,...,N}and

{)?j|j =1,..., N} gives the A,_;- and BG,_;-type Macdonald operators, respectively. We
also show that they reduce in the quasi-classical limit to the Dunkl operator fov-tady
Hamiltonian of the Calogero—Sutherland—Moser (CSM) model, which is a one-dimensional
integrable system with inverse-square interactions [15].

We study the simple case in more detail. Assuming that operaiprSLO) act on a
symmetric functional space,

Sk ) = f(2) forVj,ke(l,2, ..., N}
we get the difference operator for the = 2 case as
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This is nothing but the Macdonald operator for type (3). Eigenfunctions of the Atype

Macdonald operator are explicitly given from the generating functigg; 7) [1],
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where theg-product is defined as
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Simple calculation results in the difference equation for functitp; ¢),
(MiF)(z:1) = qF (z;1) + ¢ *F(z; pt).

One can define the Rogers—Askey—Ismail (RAI) polynomial (continupudtraspherical
polynomial) C, (z) from the generating functio'(z; ¢t) as

o0

—2.
FEn=3 %mz)z". (17)

The difference equation folF(z;¢) indicates that the RAI polynomial becomes an
eigenfunction of the Macdonald operator,

MiC,(2) = (g + ¢ p")Ca(2). (18)
One concludes that the RAI polynomi@) (z) coincides with the A-Macdonald polynomial
P(2) [16]. The polynomials for the arbitrary Young diagram= [A1, 2] (A1 > A2) are
calculated from an identity [1],

P (2) = (2122)" - Cay—3, ().

It should be remarked that in the limjt 2> — 0 the RAI polynomial reduces to the Rogers—
Sze@ polynomial, whose recurrence relation is shown to give the representation for the
Yangian invariant bases called ‘motif’ [17].

The difference operatol; (15) is calculated by restricting the functional space to
symmetric space,

Six @) = f(2) G )) = f(2) forVj, k€ {1,2,...,N}.
We obtain the difference operator fof = 2 as
Wi = (ab™q +a""bg (g +q7) + (1, 20) - (I7 = 1) + P2z, 20) - (1 — 1)
+0( Y 2) (T2 =D+ Pz z) - (T2 = D)
where function® (x, y) means

g x—qy ap*x®—a bx—-b' g lxy—g
O(x,y) = : : : :

xX—y p2x2 —1 x—1 xy—1
This operator is for the Askey-Wilson polynomial (2) with three arbitrary parame-
ters [18, 19].

We can calculate the difference operamﬁgand Wl for arbitrary N in the same manner.
The Macdonald operata#Z; (14) is calculated by restricting to the symmetric functional
space as

N N 1
o Z 1—[ q "Zj — 43\ 4
=

In general, it is not possible to give all eigenfunctions explicitly for arbitrary Young
diagrams. Some of eigenfunctions are simply given as the ‘generalized’ RAI polynomial.
We introduce the generating functioA®”)(z;¢) and the generalized RAI polynomials
CM(z) as

N 00
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One finds that the functiod ™) (z; t) satisfies the difference equation,

N-1
(MlF(N))(Z§ t) = (ZquNJrl)F(N)(Z; 1) + q7N+1F(N)(Z; pt)
j=1
which proves that the generalized RAI polynomial is an eigenfunctiobl gf
N-1

(MLCM)(2) = ( D og¥ N+ qN“p") V). (21)

j=1

As in the case fotv = 2, the generalized RAI polynomial")(z) is indeed the A_;-

Macdonald polynomial, (z) for Young diagram\. = [r]. The polynomials for othek can

be given by using the orthogonality of the Macdonald polynomials recursively [1].
The integrable difference operators for BC-type are calculated as follows,

N N
Wi=do+ Y @;(2) (TP—D+ Y &z H-(T7°-1 (22)
j=1 j=1
where functionsd;(z) and ®, are defined by

N 1 -1 -1,2,2 -1
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o= ([ e ey e
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N
= (a g™V + ab gV~ 1)Zq2k—N—1.
k=1

This difference operator is indeed for the Macdonald—Koornwinder polynomial (2). As in
the case ofV = 2 we have only three parameters, not five.

Both the difference operatorsD and Y are regarded as the quantum Dunkl
operators [13,20]. When we take a quasi- cla55|cal limit in operators, we obtain a well
known Dunkl operator associated with the classical root systems. For the A-type operator
D; (10), we set the parameter as

g=p"

and take a quasi-classical limit,
p— 14+ 0(@?).

After expanding the difference operatﬁr,- in &, we obtain a new set of operators,
D; = 1+ ed; + O(e?)

where a?j is the differential-difference operator, called the A-type (trigonometric) Dunkl
operator defined by

2ﬁZ LG - ZﬂZ

k<j Zj— k>j 3j —

(S,k—1)+ﬂ(2J—N D. (23

One sees from the commutativity dffj that the Dunkl operatoﬁj is integrable,
[d;,d] =0 for ¥, k. (24)

In the same manner, one obtains the BC-type Dunkl operator by taking the quasi-classical
limit of the difference operatof; (11). We set, in this case, the parameters as

g=p* a=p®  b=p
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One sees that the gKZ-type difference operaA’go'rs expanded as
Y; = 14 2¢9; + O(e?),

where the BC-type Dunkl operatdy is given by

——ﬂZ L G— D - ﬁZ

-1
zj — (Sjk )

k<j k>j 34—

-8 G =D+ G~ 1)
kzj Ltk
2 . +l\ [ 2 . zZ+ 1)

— t — - t — . 25

“(zj—ﬂ zj—1> “(z]?—lf Z-1 (25)

It is noted that the BC-type operator also constitutes an integrable family,

[, 3] =0 for ¥j, k. (26)

The commutativity of the Dunkl operatou%» and y; shows that sets of integrable
Hamiltonians can be defined. In fact the Hamiltonians of shdody quantum Calogero—
Sutherland—Moser (CSM) model of type A [21] and type BC [22, 23] are explicitly given
from the Dunkl operator as [13]

N . B N
=Y mdy  HE=) mGH
j=1 j=1

where we denote as a restriction of the functional spaces to the symmetric case. One sees
after lengthy calculation that the Hamiltonians of the CSM model are given by factorizing
out products of functions,

N

2
HA = ARG HA - APt = ) (z,i) —apep-1 Yy (27)
J

j=1 1<j<k<N (z) )2
HBC = ABC(z) . H{BC . ABC(;)~!

A 3\ 2%k 7%k
= P — 2 _ 1 J J
= (Z] 3Zj> AE -1 Z <(Zj — ) + (zjzx — 1)2)

1< j<k<N

Z2
- Z(a(Za +o— 1)( 1)2 +4a(@ — 1)( > 1)2) (28)

j=1

whereA”-BC(z) are the ground-state eigenfunctions for the A-type and BC-type CSM model,
respectively,

N
—B(N—1
AA(z)zl |zjﬁ(N ' | | (zj — )%
j=1

1< <k<N

N - —
A =]]5"""" G -0 -0 [] @-wGu-D°
j=1

1<j<k<N

In this sense the Macdonald operat(zﬁls and Wl may be considered as the Hamiltonians
for the ‘relativistic CSM model’ (the difference analogue of the CSM model) [24].

We have clarified the role of the affine Hecke algebra in the Macdonald polynomials and
the Calogero—Sutherland—Moser models, both of which are associated with the root system.
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Using the infinite-dimensional representation for solutions of the YBE and the RE, we have
constructed a degenerate affine Hecke algebra of type A and type BC. Although our operators
could be viewed as the Macdonald operators associated with the root system of type A and
type BC, BC-type operators include only three parameters; the Macdonald—Koornwinder
operator includes five arbitrary parameters in general. In [4] the Askey—Wilson polynomial
with five parameters is constructed by use of the affine Hecke algebra:-operator is
used, which unifies our two solutions (8) and satisfies identities (9),

proum _ (@ =@+ b= bhg @m0 Zb g mazh (29)

1- ij 1-— ij

It might be possible to unify two elliptic solutions of the reflection equation [12], and to
construct the elliptic analogue of the Macdonald—Koornwinder operator [25].

The author would like to thank Miki Wadati for kind interest in this work. He is also
grateful to M Noumi for sending [4] prior to publication. This work is supported in part by
Grants-in-Aid from the Ministry of Education, Science and Culture, Japan.
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