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Tokyo 113, Japan
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Abstract. The Macdonald operators associated with the classical root systems are constructed
based on the infinite-dimensional representation for solutions of the Yang–Baxter equation and
the reflection equation.

There has been renewed interest in theq-deformed orthogonal polynomials related with
quantum groups. One of the famous orthogonal polynomials is the Macdonald polynomial
associated with root systems [1]. Some polynomials, such as the Rogers–Askey–Ismail
polynomial and the Askey–Wilson polynomial [2], can be regarded as special cases of the
Macdonald polynomial. The AN−1-type Macdonald polynomial is an eigenfunction of

M̂Macdo
n =

∑
I⊂{1,2,...,N}

|I |=n

∏
j∈I
k 6∈I

q−1zj − qzk

zj − zk

∏
j∈I

T̂j (1)

where the shift operator is defined as

(T̂jf )(. . . , zj , . . .) = f (. . . , pzj , . . .).

On the other hand the BCN−1-type Macdonald operator (or, Macdonald–Koornwinder
operator) is defined as the difference operator

M̂BC
1 =

N∑
j=1

9j(z) · (T̂j − 1) +
N∑

j=1

9j(z
−1) · (T̂ −1

j − 1) (2)

where we set

9j(z) = (1 − azj )(1 − b zj )(1 − c zj )(1 − dzj )

(1 − z2
j )(1 − pz2

j )
·

N∏
k=1
k 6=j

(tzj − zk)(1 − tzj zk)

(zj − zk)(1 − zj zk)
.

Note that we have five arbitrary parameters,{a, b, c, d, p}. The polynomial as
eigenfunctions for this difference operator is introduced as a generalization of the Askey–
Wilson polynomial.

Recently the relationship between the Macdonald polynomial and the affine Hecke
algebra has been revealed [3, 4]. The Macdonald operators are constructed as the quantum

† E-mail: hikami@phys.s.u-tokyo.ac.jp

0305-4470/96/110281+07$19.50c© 1996 IOP Publishing Ltd L281



L282 Letter to the Editor

Knizhnik–Zamolodchikov type operator. In this letter, the Macdonald operators are studied
based on solutions of the Yang–Baxter equation and the reflection equation. We give
the infinite-dimensional representation for solutions, and construct the integrable difference
operator associated with the classical root systems.

Let us consider solutions of the Yang–Baxter equation (YBE) and the reflection equation
(RE, or boundary Yang–Baxter equation), which are respectively written as

R12(θ1/θ2)R
13(θ1/θ3)R

23(θ2/θ3) = R23(θ2/θ3)R
13(θ1/θ3)R

12(θ1/θ2) (3)

R12(θ1/θ2)(K(θ1) ⊗ 1)R21(θ1θ2)(1 ⊗ K(θ2))

= (1 ⊗ K(θ2))R
12(θ1θ2)(K(θ1) ⊗ 1)R21(θ1/θ2). (4)

Here θj are called the spectral parameters. The YBE is an elementary tool to investigate
integrable systems (see, [5–7]). The RE is used to formulate integrable systems with
boundary [8]. As a solution of the YBE and RE, we use the operator-valued solution as the
‘infinite-dimensional’ representation [9–13]; bothR andK are regarded as operators acting
on the functional spacef (z1, . . . , zN). Although elliptic solutions are explicitly given, we
only study the trigonometric solutions as degenerate cases. TheR-operator is defined by

Rjk(θ) = −1

q − q−1θ
(θĝj,k − ĝ−1

j,k ) · ŝj,k (5)

whereq is an arbitrary parameter, and̂g is the Demazure–Lusztig (DL) operator

ĝj,k = q−1zj − qzk

zj − zk

ŝj,k + (q − q−1)
zk

zj − zk

. (6)

It is noted that the operator̂sj,k exchanges coordinates

(ŝj,kf )(. . . , zj , . . . , zk, . . .) = f (. . . , zk, . . . , zj , . . .).

As solutions for the RE (4) associated with the above trigonometricR-operator (5), there
are two solutions,K andK̄ [12]:

Kj(θ) = 1

a − a−1θ2
(θ2r̂j − r̂−1

j ) (7a)

K̄j (θ) = 1

b − b−1θ
(θ ˆ̄rj − ˆ̄r−1

j ) (7b)

where parametersa andb are arbitrary, and we define the DL operatorsr̂ as

r̂j = a − a−1

zj − 1
+ a−1zj − a

zj − 1
t̂j (8a)

ˆ̄rj = b − b−1

z2
j − 1

+ b−1z2
j − b

z2
j − 1

t̂j . (8b)

Operatort̂ is a reflection operator, which acts on a functional space as

(t̂j f )(. . . , zj , . . .) = f (. . . , z−1
j , . . .).

These two solutions correspond to a reflection at the boundary associated with the Weyl
group of type B and type C, respectively.

We note several identities for the DL operators, which may be directly checked:

ĝj,j+1ĝj+1,j+2ĝj,j+1 = ĝj+1,j+2ĝj,j+1ĝj+1,j+2 (9a)

(ĝ + q)(ĝ − q−1) = 0 (9b)

r̂j ĝj,j+1r̂j ĝj,j+1 = ĝj,j+1r̂j ĝj,j+1r̂j (9c)

(r̂ − a)(r̂ + a−1) = 0. (9d)
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Both operatorŝg andr̂ satisfy the Hecke relations. We have the same identities for operator
ˆ̄r. Using the DL operators, we can define sets of integrable difference operators, which
have the same structure with the quantum Knizhnik–Zamolodchikov (qKZ) operators [14]:

D̂j = ĝj,j−1ĝj−1,j−2 . . . ĝ2,1 · T̂1 · ĝ−1
1,N ĝ−1

N,N−1ĝ
−1
N−1,N−2 . . . ĝ−1

j+2,j+1ŝ1,N ŝ1,N−1 . . . ŝ1,2 (10)

Ŷj = ĝj,j−1ĝj−1,j−2 . . . ĝ2,1 · T̂1r̂1T̂
−1

1 · ĝ2,1ĝ3,2 . . . ĝN,N−1 ˆ̄r−1
N · ĝ−1

N,N−1ĝ
−1
N−1,N−2 . . . ĝ−1

j+1,j .

(11)

We can see from the YBE (3) and RE (4) that they constitute commuting families,

[D̂j , D̂k] = 0 (12)

[Ŷj , Ŷk] = 0 for ∀j,k = 1, . . . , N . (13)

The qKZ operators are shown to satisfy the following relations:

ĝj+1,j D̂j ĝj+1,j = D̂j+1

ĝj+1,j Ŷj ĝj+1,j = Ŷj+1

Ŷ−1
1 · (T̂1r̂1T̂

−1
1 ) = (T̂1r̂1T̂

−1
1 )−1 · Ŷ1 − (b − b−1).

We remark that algebra constructed from operators{D̂j , ĝj+1,j |j = 1, . . . , N} is called as
the degenerate affine Hecke algebra of type A while algebra from{Ŷj , ĝj+1,j , T̂1r̂1T̂

−1
1 , ˆ̄rN }

as algebra of type BC. Commuting difference operators give us sets of integrable difference
operators:

M̂n =
N∑

j=1

(D̂j )
n (14)

Ŵn =
N∑

j=1

((Ŷj )
n + (Ŷj )

−n). (15)

In the rest of this letter we shall clarify that two sets of operators{D̂j |j = 1, . . . , N} and
{Ŷj |j = 1, . . . , N} gives the AN−1- and BCN−1-type Macdonald operators, respectively. We
also show that they reduce in the quasi-classical limit to the Dunkl operator for theN -body
Hamiltonian of the Calogero–Sutherland–Moser (CSM) model, which is a one-dimensional
integrable system with inverse-square interactions [15].

We study the simple case in more detail. Assuming that operatorsD̂j (10) act on a
symmetric functional space,

(ŝj,kf )(z) = f (z) for ∀j, k ∈ {1, 2, . . . , N}
we get the difference operator for theN = 2 case as

M̂1 = q−1z1 − qz2

z1 − z2
T̂1 + q−1z2 − qz1

z2 − z1
T̂2.

This is nothing but the Macdonald operator for type A1 (1). Eigenfunctions of the A1-type
Macdonald operator are explicitly given from the generating functionF(z; t) [1],

F(z; t) = (q−2z1t; p)∞
(z1t; p)∞

· (q−2z2t; p)∞
(z2t; p)∞

(16)

where theq-product is defined as

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) (a; q)0 = 1.
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Simple calculation results in the difference equation for functionF(z; t),

(M̂1F)(z; t) = qF(z; t) + q−1F(z; pt).

One can define the Rogers–Askey–Ismail (RAI) polynomial (continuousq-ultraspherical
polynomial)Cn(z) from the generating functionF(z; t) as

F(z; t) =
∞∑

n=0

(q−2; p)n

(p; p)n
Cn(z)t

n. (17)

The difference equation forF(z; t) indicates that the RAI polynomial becomes an
eigenfunction of the Macdonald operator,

M̂1Cn(z) = (q + q−1pn)Cn(z). (18)

One concludes that the RAI polynomialCn(z) coincides with the A1-Macdonald polynomial
P[n](z) [16]. The polynomials for the arbitrary Young diagramλ = [λ1, λ2] (λ1 > λ2) are
calculated from an identity [1],

P[λ1,λ2](z) = (z1z2)
λ2 · Cλ1−λ2(z).

It should be remarked that in the limitq−2 → 0 the RAI polynomial reduces to the Rogers–
Szeg̈o polynomial, whose recurrence relation is shown to give the representation for the
Yangian invariant bases called ‘motif’ [17].

The difference operatorŴ1 (15) is calculated by restricting the functional space to
symmetric space,

(ŝj,kf )(z) = f (z) (t̂j f )(z) = f (z) for ∀j, k ∈ {1, 2, . . . , N}.
We obtain the difference operator forN = 2 as

Ŵ1 = (ab−1q + a−1bq−1)(q + q−1) + 8(z1, z2) · (T̂ 2
1 − 1) + 8(z2, z1) · (T̂ 2

2 − 1)

+8(z−1
1 , z2) · (T̂ −2

1 − 1) + 8(z−1
2 , z1) · (T̂ −2

1 − 1)

where function8(x, y) means

8(x, y) = q−1x − qy

x − y
· a−1p2x2 − a

p2x2 − 1
· bx − b−1

x − 1
· q−1xy − q

xy − 1
.

This operator is for the Askey–Wilson polynomial (2) with three arbitrary parame-
ters [18, 19].

We can calculate the difference operatorsM̂1 andŴ1 for arbitraryN in the same manner.
The Macdonald operator̂M1 (14) is calculated by restricting to the symmetric functional
space as

M̂1 =
N∑

j=1

( N∏
k=1
k 6=j

q−1zj − qzk

zj − zk

)
T̂j . (19)

In general, it is not possible to give all eigenfunctions explicitly for arbitrary Young
diagrams. Some of eigenfunctions are simply given as the ‘generalized’ RAI polynomial.
We introduce the generating functionF (N)(z; t) and the generalized RAI polynomials
C(N)

n (z) as

F (N)(z; t) =
N∏

j=1

(q−2zj t; p)∞
(zj t; p)∞

=
∞∑

n=0

(q−2; p)n

(p; p)n
C(N)

n (z)tn. (20)
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One finds that the functionF (N)(z; t) satisfies the difference equation,

(M̂1F
(N))(z; t) =

( N−1∑
j=1

q2j−N+1

)
F (N)(z; t) + q−N+1F (N)(z; pt)

which proves that the generalized RAI polynomial is an eigenfunction ofM̂1,

(M̂1C
(N)
n )(z) =

( N−1∑
j=1

q2j−N+1 + q−N+1pn

)
C(N)

n (z). (21)

As in the case forN = 2, the generalized RAI polynomialC(N)
n (z) is indeed the AN−1-

Macdonald polynomialPλ(z) for Young diagramλ = [n]. The polynomials for otherλ can
be given by using the orthogonality of the Macdonald polynomials recursively [1].

The integrable difference operators for BC-type are calculated as follows,

Ŵ1 = 80 +
N∑

j=1

8j(z) · (T̂ 2
j − 1) +

N∑
j=1

8j(z
−1) · (T̂ −2

j − 1) (22)

where functions8j(z) and80 are defined by

8j(z) =
( N∏

k=1
k 6=j

q−1zj − qzk

zj − zk

· q−1zj zk − q

zj zk − 1

)
· a−1p2z2

j − a

p2z2
j − 1

· bzj − b−1

zj − 1

80 = (a−1bq1−N + ab−1qN−1)

N∑
k=1

q2k−N−1.

This difference operator is indeed for the Macdonald–Koornwinder polynomial (2). As in
the case ofN = 2 we have only three parameters, not five.

Both the difference operatorŝDj and Ŷj are regarded as the quantum Dunkl
operators [13, 20]. When we take a quasi-classical limit in operators, we obtain a well
known Dunkl operator associated with the classical root systems. For the A-type operator
D̂j (10), we set the parameter as

q = p−β

and take a quasi-classical limit,

p → 1 + ε + O(ε2).

After expanding the difference operatorD̂j in ε, we obtain a new set of operators,

D̂j = 1 + εd̂j + O(ε2)

where d̂j is the differential-difference operator, called the A-type (trigonometric) Dunkl
operator, defined by

d̂j = zj
∂

∂zj
− 2β

∑
k<j

zk

zj − zk

(ŝj,k − 1) − 2β
∑
k>j

zj

zj − zk

(ŝj,k − 1) + β(2j − N − 1). (23)

One sees from the commutativity of̂Dj that the Dunkl operator̂dj is integrable,

[d̂j , d̂k] = 0 for ∀j, k. (24)

In the same manner, one obtains the BC-type Dunkl operator by taking the quasi-classical
limit of the difference operator̂Yj (11). We set, in this case, the parameters as

q = p−β a = p−2ᾱ b = p2α.
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One sees that the qKZ-type difference operatorŶj is expanded as

Ŷj = 1 + 2εŷj + O(ε2),

where the BC-type Dunkl operatorŷj is given by

ŷj = zj
∂

∂zj
− β

∑
k<j

zk

zj − zk

(ŝj,k − 1) − β
∑
k>j

zj

zj − zk

(ŝj,k − 1)

−β
∑
k 6=j

1

zj zk − 1
(t̂j t̂k ŝj,k − 1) + β(j − 1)

−α

(
2

zj − 1
t̂j − zj + 1

zj − 1

)
− ᾱ

(
2

z2
j − 1

t̂j − z2
j + 1

z2
j − 1

)
. (25)

It is noted that the BC-type operator also constitutes an integrable family,

[ŷj , ŷk] = 0 for ∀j, k. (26)

The commutativity of the Dunkl operatorŝdj and ŷj shows that sets of integrable
Hamiltonians can be defined. In fact the Hamiltonians of theN -body quantum Calogero–
Sutherland–Moser (CSM) model of type A [21] and type BC [22, 23] are explicitly given
from the Dunkl operator as [13]

H̃A =
N∑

j=1

π(d̂2
j ) H̃BC =

N∑
j=1

π(ŷ2
j )

where we denoteπ as a restriction of the functional spaces to the symmetric case. One sees
after lengthy calculation that the Hamiltonians of the CSM model are given by factorizing
out products of functions,

HA = 1A(z) · H̃A · 1A(z)−1 =
N∑

j=1

(
zj

∂

∂zj

)2

− 4β(2β − 1)
∑

16j<k6N

zj zk

(zj − zk)2
(27)

HBC = 1BC(z) · H̃BC · 1BC(z)−1

=
N∑

j=1

(
zj

∂

∂zj

)2

− 2β(β − 1)
∑

16j<k6N

(
zj zk

(zj − zk)2
+ zj zk

(zj zk − 1)2

)

−
N∑

j=1

(
α(2ᾱ + α − 1)

zj

(zj − 1)2
+ 4ᾱ(ᾱ − 1)

z2
j

(z2
j − 1)2

)
(28)

where1A,BC(z) are the ground-state eigenfunctions for the A-type and BC-type CSM model,
respectively,

1A(z) =
N∏

j=1

z
−β(N−1)

j ·
∏

16j<k6N

(zj − zk)
2β

1BC(z) =
N∏

j=1

z
−β(N−1)−ᾱ−α

j (zj − 1)2α(z2
j − 1)ᾱ ·

∏
16j<k6N

(zj − zk)
β(zj zk − 1)β .

In this sense the Macdonald operatorsM̂1 andŴ1 may be considered as the Hamiltonians
for the ‘relativistic CSM model’ (the difference analogue of the CSM model) [24].

We have clarified the role of the affine Hecke algebra in the Macdonald polynomials and
the Calogero–Sutherland–Moser models, both of which are associated with the root system.
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Using the infinite-dimensional representation for solutions of the YBE and the RE, we have
constructed a degenerate affine Hecke algebra of type A and type BC. Although our operators
could be viewed as the Macdonald operators associated with the root system of type A and
type BC, BC-type operators include only three parameters; the Macdonald–Koornwinder
operator includes five arbitrary parameters in general. In [4] the Askey–Wilson polynomial
with five parameters is constructed by use of the affine Hecke algebra. Anr̂-operator is
used, which unifies our two solutions (8) and satisfies identities (9),

r̂Noumi
j = (a − a−1) + (b − b−1)zj

1 − z2
j

+ a−1 − (b − b−1)zj − az2
j

1 − z2
j

t̂ . (29)

It might be possible to unify two elliptic solutions of the reflection equation [12], and to
construct the elliptic analogue of the Macdonald–Koornwinder operator [25].

The author would like to thank Miki Wadati for kind interest in this work. He is also
grateful to M Noumi for sending [4] prior to publication. This work is supported in part by
Grants-in-Aid from the Ministry of Education, Science and Culture, Japan.
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