Affine Hecke algebra, Macdonald polynomials, and quantum many-body systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 L281
(http://iopscience.iop.org/0305-4470/29/11/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 01:40

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Affine Hecke algebra, Macdonald polynomials, and quantum many-body systems

Kazuhiro Hikami \dagger
Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113, Japan

Received 20 February 1996

Abstract

The Macdonald operators associated with the classical root systems are constructed based on the infinite-dimensional representation for solutions of the Yang-Baxter equation and the reflection equation.

There has been renewed interest in the q-deformed orthogonal polynomials related with quantum groups. One of the famous orthogonal polynomials is the Macdonald polynomial associated with root systems [1]. Some polynomials, such as the Rogers-Askey-Ismail polynomial and the Askey-Wilson polynomial [2], can be regarded as special cases of the Macdonald polynomial. The A_{N-1}-type Macdonald polynomial is an eigenfunction of

$$
\begin{equation*}
\hat{M}_{n}^{\text {Macdo }}=\sum_{\substack{I \subset\{1,2, \ldots, N\} \\|I|=n}} \prod_{\substack{j \in I \\ k \notin I}} \frac{q^{-1} z_{j}-q z_{k}}{z_{j}-z_{k}} \prod_{j \in I} \hat{T}_{j} \tag{1}
\end{equation*}
$$

where the shift operator is defined as

$$
\left(\hat{T}_{j} f\right)\left(\ldots, z_{j}, \ldots\right)=f\left(\ldots, p z_{j}, \ldots\right)
$$

On the other hand the BC_{N-1}-type Macdonald operator (or, Macdonald-Koornwinder operator) is defined as the difference operator

$$
\begin{equation*}
\hat{M}_{1}^{\mathrm{BC}}=\sum_{j=1}^{N} \Psi_{j}(z) \cdot\left(\hat{T}_{j}-1\right)+\sum_{j=1}^{N} \Psi_{j}\left(z^{-1}\right) \cdot\left(\hat{T}_{j}^{-1}-1\right) \tag{2}
\end{equation*}
$$

where we set

$$
\Psi_{j}(z)=\frac{\left(1-a z_{j}\right)\left(1-b z_{j}\right)\left(1-c z_{j}\right)\left(1-d z_{j}\right)}{\left(1-z_{j}^{2}\right)\left(1-p z_{j}^{2}\right)} \cdot \prod_{\substack{k=1 \\ k \neq j}}^{N} \frac{\left(t z_{j}-z_{k}\right)\left(1-t z_{j} z_{k}\right)}{\left(z_{j}-z_{k}\right)\left(1-z_{j} z_{k}\right)}
$$

Note that we have five arbitrary parameters, $\{a, b, c, d, p\}$. The polynomial as eigenfunctions for this difference operator is introduced as a generalization of the AskeyWilson polynomial.

Recently the relationship between the Macdonald polynomial and the affine Hecke algebra has been revealed [3, 4]. The Macdonald operators are constructed as the quantum

[^0]Knizhnik-Zamolodchikov type operator. In this letter, the Macdonald operators are studied based on solutions of the Yang-Baxter equation and the reflection equation. We give the infinite-dimensional representation for solutions, and construct the integrable difference operator associated with the classical root systems.

Let us consider solutions of the Yang-Baxter equation (YBE) and the reflection equation (RE, or boundary Yang-Baxter equation), which are respectively written as

$$
\begin{align*}
& R^{12}\left(\theta_{1} / \theta_{2}\right) R^{13}\left(\theta_{1} / \theta_{3}\right) R^{23}\left(\theta_{2} / \theta_{3}\right)=R^{23}\left(\theta_{2} / \theta_{3}\right) R^{13}\left(\theta_{1} / \theta_{3}\right) R^{12}\left(\theta_{1} / \theta_{2}\right) \tag{3}\\
& R^{12}\left(\theta_{1} / \theta_{2}\right)\left(K\left(\theta_{1}\right) \otimes 1\right) R^{21}\left(\theta_{1} \theta_{2}\right)\left(1 \otimes K\left(\theta_{2}\right)\right) \\
& \quad=\left(1 \otimes K\left(\theta_{2}\right)\right) R^{12}\left(\theta_{1} \theta_{2}\right)\left(K\left(\theta_{1}\right) \otimes 1\right) R^{21}\left(\theta_{1} / \theta_{2}\right) \tag{4}
\end{align*}
$$

Here θ_{j} are called the spectral parameters. The YBE is an elementary tool to investigate integrable systems (see, [5-7]). The RE is used to formulate integrable systems with boundary [8]. As a solution of the YBE and RE, we use the operator-valued solution as the 'infinite-dimensional' representation [9-13]; both R and K are regarded as operators acting on the functional space $f\left(z_{1}, \ldots, z_{N}\right)$. Although elliptic solutions are explicitly given, we only study the trigonometric solutions as degenerate cases. The R-operator is defined by

$$
\begin{equation*}
R^{j k}(\theta)=\frac{-1}{q-q^{-1} \theta}\left(\theta \hat{g}_{j, k}-\hat{g}_{j, k}^{-1}\right) \cdot \hat{s}_{j, k} \tag{5}
\end{equation*}
$$

where q is an arbitrary parameter, and \hat{g} is the Demazure-Lusztig (DL) operator

$$
\begin{equation*}
\hat{g}_{j, k}=\frac{q^{-1} z_{j}-q z_{k}}{z_{j}-z_{k}} \hat{s}_{j, k}+\left(q-q^{-1}\right) \frac{z_{k}}{z_{j}-z_{k}} . \tag{6}
\end{equation*}
$$

It is noted that the operator $\hat{s}_{j, k}$ exchanges coordinates

$$
\left(\hat{s}_{j, k} f\right)\left(\ldots, z_{j}, \ldots, z_{k}, \ldots\right)=f\left(\ldots, z_{k}, \ldots, z_{j}, \ldots\right)
$$

As solutions for the RE (4) associated with the above trigonometric R-operator (5), there are two solutions, K and \bar{K} [12]:

$$
\begin{align*}
K^{j}(\theta) & =\frac{1}{a-a^{-1} \theta^{2}}\left(\theta^{2} \hat{r}_{j}-\hat{r}_{j}^{-1}\right) \tag{7a}\\
\bar{K}^{j}(\theta) & =\frac{1}{b-b^{-1} \theta}\left(\theta \hat{\bar{r}}_{j}-\hat{\bar{r}}_{j}^{-1}\right) \tag{7b}
\end{align*}
$$

where parameters a and b are arbitrary, and we define the DL operators \hat{r} as

$$
\begin{align*}
& \hat{r}_{j}=\frac{a-a^{-1}}{z_{j}-1}+\frac{a^{-1} z_{j}-a}{z_{j}-1} \hat{t}_{j} \tag{8a}\\
& \hat{\bar{r}}_{j}=\frac{b-b^{-1}}{z_{j}^{2}-1}+\frac{b^{-1} z_{j}^{2}-b}{z_{j}^{2}-1} \hat{t}_{j} \tag{8b}
\end{align*}
$$

Operator \hat{t} is a reflection operator, which acts on a functional space as

$$
\left(\hat{t}_{j} f\right)\left(\ldots, z_{j}, \ldots\right)=f\left(\ldots, z_{j}^{-1}, \ldots\right) .
$$

These two solutions correspond to a reflection at the boundary associated with the Weyl group of type B and type C, respectively.

We note several identities for the DL operators, which may be directly checked:

$$
\begin{align*}
& \hat{g}_{j, j+1} \hat{g}_{j+1, j+2} \hat{g}_{j, j+1}=\hat{g}_{j+1, j+2} \hat{g}_{j, j+1} \hat{g}_{j+1, j+2} \tag{9a}\\
& (\hat{g}+q)\left(\hat{g}-q^{-1}\right)=0 \tag{9b}\\
& \hat{r}_{j} \hat{g}_{j, j+1} \hat{r}_{j} \hat{g}_{j, j+1}=\hat{g}_{j, j+1} \hat{r}_{j} \hat{g}_{j, j+1} \hat{r}_{j} \tag{9c}\\
& (\hat{r}-a)\left(\hat{r}+a^{-1}\right)=0 . \tag{9d}
\end{align*}
$$

Both operators \hat{g} and \hat{r} satisfy the Hecke relations. We have the same identities for operator $\hat{\bar{r}}$. Using the DL operators, we can define sets of integrable difference operators, which have the same structure with the quantum Knizhnik-Zamolodchikov (qKZ) operators [14]:
$\hat{D}_{j}=\hat{g}_{j, j-1} \hat{g}_{j-1, j-2} \ldots \hat{g}_{2,1} \cdot \hat{T}_{1} \cdot \hat{g}_{1, N}^{-1} \hat{g}_{N, N-1}^{-1} \hat{g}_{N-1, N-2}^{-1} \ldots \hat{g}_{j+2, j+1}^{-1} \hat{s}_{1, N} \hat{s}_{1, N-1} \ldots \hat{s}_{1,2}$
$\hat{Y}_{j}=\hat{g}_{j, j-1} \hat{g}_{j-1, j-2} \ldots \hat{g}_{2,1} \cdot \hat{T}_{1} \hat{r}_{1} \hat{T}_{1}^{-1} \cdot \hat{g}_{2,1} \hat{g}_{3,2} \ldots \hat{g}_{N, N-1} \hat{\bar{r}}_{N}^{-1} \cdot \hat{g}_{N, N-1}^{-1} \hat{g}_{N-1, N-2}^{-1} \ldots \hat{g}_{j+1, j}^{-1}$.

We can see from the YBE (3) and RE (4) that they constitute commuting families,

$$
\begin{align*}
& {\left[\hat{D}_{j}, \hat{D}_{k}\right]=0} \tag{12}\\
& {\left[\hat{Y}_{j}, \hat{Y}_{k}\right]=0 \quad \text { for } \forall_{j, k}=1, \ldots, N} \tag{13}
\end{align*}
$$

The qKZ operators are shown to satisfy the following relations:

$$
\begin{aligned}
& \hat{g}_{j+1, j} \hat{D}_{j} \hat{g}_{j+1, j}=\hat{D}_{j+1} \\
& \hat{g}_{j+1, j} \hat{Y}_{j} \hat{g}_{j+1, j}=\hat{Y}_{j+1} \\
& \hat{Y}_{1}^{-1} \cdot\left(\hat{T}_{1} \hat{r}_{1} \hat{T}_{1}^{-1}\right)=\left(\hat{T}_{1} \hat{r}_{1} \hat{T}_{1}^{-1}\right)^{-1} \cdot \hat{Y}_{1}-\left(b-b^{-1}\right) .
\end{aligned}
$$

We remark that algebra constructed from operators $\left\{\hat{D}_{j}, \hat{g}_{j+1, j} \mid j=1, \ldots, N\right\}$ is called as the degenerate affine Hecke algebra of type A while algebra from $\left\{\hat{Y}_{j}, \hat{g}_{j+1, j}, \hat{T}_{1} \hat{r}_{1} \hat{T}_{1}^{-1}, \hat{\bar{r}}_{N}\right\}$ as algebra of type BC. Commuting difference operators give us sets of integrable difference operators:

$$
\begin{align*}
& \hat{M}_{n}=\sum_{j=1}^{N}\left(\hat{D}_{j}\right)^{n} \tag{14}\\
& \hat{W}_{n}=\sum_{j=1}^{N}\left(\left(\hat{Y}_{j}\right)^{n}+\left(\hat{Y}_{j}\right)^{-n}\right) . \tag{15}
\end{align*}
$$

In the rest of this letter we shall clarify that two sets of operators $\left\{\hat{D}_{j} \mid j=1, \ldots, N\right\}$ and $\left\{\hat{Y}_{j} \mid j=1, \ldots, N\right\}$ gives the $\mathrm{A}_{N-1^{-}}$and $\mathrm{BC}_{N-1^{-t y p e}}$ Macdonald operators, respectively. We also show that they reduce in the quasi-classical limit to the Dunkl operator for the N-body Hamiltonian of the Calogero-Sutherland-Moser (CSM) model, which is a one-dimensional integrable system with inverse-square interactions [15].

We study the simple case in more detail. Assuming that operators \hat{D}_{j} (10) act on a symmetric functional space,

$$
\left(\hat{s}_{j, k} f\right)(z)=f(z) \quad \text { for }{ }^{\forall} j, k \in\{1,2, \ldots, N\}
$$

we get the difference operator for the $N=2$ case as

$$
\hat{M}_{1}=\frac{q^{-1} z_{1}-q z_{2}}{z_{1}-z_{2}} \hat{T}_{1}+\frac{q^{-1} z_{2}-q z_{1}}{z_{2}-z_{1}} \hat{T}_{2}
$$

This is nothing but the Macdonald operator for type A_{1} (1). Eigenfunctions of the A_{1}-type Macdonald operator are explicitly given from the generating function $F(z ; t)$ [1],

$$
\begin{equation*}
F(z ; t)=\frac{\left(q^{-2} z_{1} t ; p\right)_{\infty}}{\left(z_{1} t ; p\right)_{\infty}} \cdot \frac{\left(q^{-2} z_{2} t ; p\right)_{\infty}}{\left(z_{2} t ; p\right)_{\infty}} \tag{16}
\end{equation*}
$$

where the q-product is defined as

$$
(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right) \quad(a ; q)_{0}=1
$$

Simple calculation results in the difference equation for function $F(z ; t)$,

$$
\left(\hat{M}_{1} F\right)(z ; t)=q F(z ; t)+q^{-1} F(z ; p t) .
$$

One can define the Rogers-Askey-Ismail (RAI) polynomial (continuous q-ultraspherical polynomial) $C_{n}(z)$ from the generating function $F(z ; t)$ as

$$
\begin{equation*}
F(z ; t)=\sum_{n=0}^{\infty} \frac{\left(q^{-2} ; p\right)_{n}}{(p ; p)_{n}} C_{n}(z) t^{n} \tag{17}
\end{equation*}
$$

The difference equation for $F(z ; t)$ indicates that the RAI polynomial becomes an eigenfunction of the Macdonald operator,

$$
\begin{equation*}
\hat{M}_{1} C_{n}(z)=\left(q+q^{-1} p^{n}\right) C_{n}(z) \tag{18}
\end{equation*}
$$

One concludes that the RAI polynomial $C_{n}(z)$ coincides with the A_{1}-Macdonald polynomial $P_{[n]}(z)$ [16]. The polynomials for the arbitrary Young diagram $\lambda=\left[\lambda_{1}, \lambda_{2}\right]\left(\lambda_{1} \geqslant \lambda_{2}\right)$ are calculated from an identity [1],

$$
P_{\left[\lambda_{1}, \lambda_{2}\right]}(z)=\left(z_{1} z_{2}\right)^{\lambda_{2}} \cdot C_{\lambda_{1}-\lambda_{2}}(z) .
$$

It should be remarked that in the limit $q^{-2} \rightarrow 0$ the RAI polynomial reduces to the RogersSzegö polynomial, whose recurrence relation is shown to give the representation for the Yangian invariant bases called 'motif' [17].

The difference operator \hat{W}_{1} (15) is calculated by restricting the functional space to symmetric space,

$$
\left(\hat{s}_{j, k} f\right)(z)=f(z) \quad\left(\hat{t}_{j} f\right)(z)=f(z) \quad \text { for }{ }^{\forall} j, k \in\{1,2, \ldots, N\}
$$

We obtain the difference operator for $N=2$ as

$$
\begin{aligned}
\hat{W}_{1}=\left(a b^{-1} q\right. & \left.+a^{-1} b q^{-1}\right)\left(q+q^{-1}\right)+\Phi\left(z_{1}, z_{2}\right) \cdot\left(\hat{T}_{1}^{2}-1\right)+\Phi\left(z_{2}, z_{1}\right) \cdot\left(\hat{T}_{2}^{2}-1\right) \\
& +\Phi\left(z_{1}^{-1}, z_{2}\right) \cdot\left(\hat{T}_{1}^{-2}-1\right)+\Phi\left(z_{2}^{-1}, z_{1}\right) \cdot\left(\hat{T}_{1}^{-2}-1\right)
\end{aligned}
$$

where function $\Phi(x, y)$ means

$$
\Phi(x, y)=\frac{q^{-1} x-q y}{x-y} \cdot \frac{a^{-1} p^{2} x^{2}-a}{p^{2} x^{2}-1} \cdot \frac{b x-b^{-1}}{x-1} \cdot \frac{q^{-1} x y-q}{x y-1} .
$$

This operator is for the Askey-Wilson polynomial (2) with three arbitrary parameters [18, 19].

We can calculate the difference operators \hat{M}_{1} and \hat{W}_{1} for arbitrary N in the same manner. The Macdonald operator \hat{M}_{1} (14) is calculated by restricting to the symmetric functional space as

$$
\begin{equation*}
\hat{M}_{1}=\sum_{j=1}^{N}\left(\prod_{\substack{k=1 \\ k \neq j}}^{N} \frac{q^{-1} z_{j}-q z_{k}}{z_{j}-z_{k}}\right) \hat{T}_{j} . \tag{19}
\end{equation*}
$$

In general, it is not possible to give all eigenfunctions explicitly for arbitrary Young diagrams. Some of eigenfunctions are simply given as the 'generalized' RAI polynomial. We introduce the generating function $F^{(N)}(z ; t)$ and the generalized RAI polynomials $C_{n}^{(N)}(z)$ as

$$
\begin{equation*}
F^{(N)}(z ; t)=\prod_{j=1}^{N} \frac{\left(q^{-2} z_{j} t ; p\right)_{\infty}}{\left(z_{j} t ; p\right)_{\infty}}=\sum_{n=0}^{\infty} \frac{\left(q^{-2} ; p\right)_{n}}{(p ; p)_{n}} C_{n}^{(N)}(z) t^{n} \tag{20}
\end{equation*}
$$

One finds that the function $F^{(N)}(z ; t)$ satisfies the difference equation,

$$
\left(\hat{M}_{1} F^{(N)}\right)(z ; t)=\left(\sum_{j=1}^{N-1} q^{2 j-N+1}\right) F^{(N)}(z ; t)+q^{-N+1} F^{(N)}(z ; p t)
$$

which proves that the generalized RAI polynomial is an eigenfunction of \hat{M}_{1},

$$
\begin{equation*}
\left(\hat{M}_{1} C_{n}^{(N)}\right)(z)=\left(\sum_{j=1}^{N-1} q^{2 j-N+1}+q^{-N+1} p^{n}\right) C_{n}^{(N)}(z) \tag{21}
\end{equation*}
$$

As in the case for $N=2$, the generalized RAI polynomial $C_{n}^{(N)}(z)$ is indeed the $\mathrm{A}_{N-1^{-}}$ Macdonald polynomial $P_{\lambda}(z)$ for Young diagram $\lambda=[n]$. The polynomials for other λ can be given by using the orthogonality of the Macdonald polynomials recursively [1].

The integrable difference operators for BC-type are calculated as follows,

$$
\begin{equation*}
\hat{W}_{1}=\Phi_{0}+\sum_{j=1}^{N} \Phi_{j}(z) \cdot\left(\hat{T}_{j}^{2}-1\right)+\sum_{j=1}^{N} \Phi_{j}\left(z^{-1}\right) \cdot\left(\hat{T}_{j}^{-2}-1\right) \tag{22}
\end{equation*}
$$

where functions $\Phi_{j}(z)$ and Φ_{0} are defined by

$$
\begin{aligned}
& \Phi_{j}(z)=\left(\prod_{\substack{k=1 \\
k \neq j}}^{N} \frac{q^{-1} z_{j}-q z_{k}}{z_{j}-z_{k}} \cdot \frac{q^{-1} z_{j} z_{k}-q}{z_{j} z_{k}-1}\right) \cdot \frac{a^{-1} p^{2} z_{j}^{2}-a}{p^{2} z_{j}^{2}-1} \cdot \frac{b z_{j}-b^{-1}}{z_{j}-1} \\
& \Phi_{0}=\left(a^{-1} b q^{1-N}+a b^{-1} q^{N-1}\right) \sum_{k=1}^{N} q^{2 k-N-1} .
\end{aligned}
$$

This difference operator is indeed for the Macdonald-Koornwinder polynomial (2). As in the case of $N=2$ we have only three parameters, not five.

Both the difference operators \hat{D}_{j} and \hat{Y}_{j} are regarded as the quantum Dunkl operators $[13,20]$. When we take a quasi-classical limit in operators, we obtain a well known Dunkl operator associated with the classical root systems. For the A-type operator $\hat{D}_{j}(10)$, we set the parameter as

$$
q=p^{-\beta}
$$

and take a quasi-classical limit,

$$
p \rightarrow 1+\varepsilon+\mathrm{O}\left(\varepsilon^{2}\right)
$$

After expanding the difference operator \hat{D}_{j} in ε, we obtain a new set of operators,

$$
\hat{D}_{j}=1+\varepsilon \hat{d}_{j}+\mathrm{O}\left(\varepsilon^{2}\right)
$$

where \hat{d}_{j} is the differential-difference operator, called the A-type (trigonometric) Dunkl operator, defined by
$\hat{d}_{j}=z_{j} \frac{\partial}{\partial z_{j}}-2 \beta \sum_{k<j} \frac{z_{k}}{z_{j}-z_{k}}\left(\hat{s}_{j, k}-1\right)-2 \beta \sum_{k>j} \frac{z_{j}}{z_{j}-z_{k}}\left(\hat{s}_{j, k}-1\right)+\beta(2 j-N-1)$.
One sees from the commutativity of \hat{D}_{j} that the Dunkl operator \hat{d}_{j} is integrable,

$$
\begin{equation*}
\left[\hat{d}_{j}, \hat{d}_{k}\right]=0 \quad \text { for }{ }^{\forall} j, k \tag{24}
\end{equation*}
$$

In the same manner, one obtains the BC-type Dunkl operator by taking the quasi-classical limit of the difference operator \hat{Y}_{j} (11). We set, in this case, the parameters as

$$
q=p^{-\beta} \quad a=p^{-2 \bar{\alpha}} \quad b=p^{2 \alpha} .
$$

One sees that the qKZ-type difference operator \hat{Y}_{j} is expanded as

$$
\hat{Y}_{j}=1+2 \varepsilon \hat{y}_{j}+\mathrm{O}\left(\varepsilon^{2}\right)
$$

where the BC-type Dunkl operator \hat{y}_{j} is given by

$$
\begin{align*}
\hat{y}_{j}=z_{j} \frac{\partial}{\partial z_{j}}- & \beta \sum_{k<j} \frac{z_{k}}{z_{j}-z_{k}}\left(\hat{s}_{j, k}-1\right)-\beta \sum_{k>j} \frac{z_{j}}{z_{j}-z_{k}}\left(\hat{s}_{j, k}-1\right) \\
& -\beta \sum_{k \neq j} \frac{1}{z_{j} z_{k}-1}\left(\hat{t}_{j} \hat{t}_{k} \hat{s}_{j, k}-1\right)+\beta(j-1) \\
& -\alpha\left(\frac{2}{z_{j}-1} \hat{t}_{j}-\frac{z_{j}+1}{z_{j}-1}\right)-\bar{\alpha}\left(\frac{2}{z_{j}^{2}-1} \hat{t}_{j}-\frac{z_{j}^{2}+1}{z_{j}^{2}-1}\right) . \tag{25}
\end{align*}
$$

It is noted that the BC-type operator also constitutes an integrable family,

$$
\begin{equation*}
\left[\hat{y}_{j}, \hat{y}_{k}\right]=0 \quad \text { for }{ }^{\forall} j, k . \tag{26}
\end{equation*}
$$

The commutativity of the Dunkl operators \hat{d}_{j} and \hat{y}_{j} shows that sets of integrable Hamiltonians can be defined. In fact the Hamiltonians of the N-body quantum Calogero-Sutherland-Moser (CSM) model of type A [21] and type BC [22,23] are explicitly given from the Dunkl operator as [13]

$$
\tilde{\mathcal{H}}^{\mathrm{A}}=\sum_{j=1}^{N} \pi\left(\hat{d}_{j}^{2}\right) \quad \tilde{\mathcal{H}}^{\mathrm{BC}}=\sum_{j=1}^{N} \pi\left(\hat{y}_{j}^{2}\right)
$$

where we denote π as a restriction of the functional spaces to the symmetric case. One sees after lengthy calculation that the Hamiltonians of the CSM model are given by factorizing out products of functions,

$$
\begin{align*}
\mathcal{H}^{\mathrm{A}}=\Delta^{\mathrm{A}}(z) \cdot \tilde{\mathcal{H}}^{\mathrm{A}} \cdot \Delta^{\mathrm{A}}(z)^{-1}=\sum_{j=1}^{N}\left(z_{j} \frac{\partial}{\partial z_{j}}\right)^{2}-4 \beta(2 \beta-1) \sum_{1 \leqslant j<k \leqslant N} \frac{z_{j} z_{k}}{\left(z_{j}-z_{k}\right)^{2}} \tag{27}\\
\begin{aligned}
& \mathcal{H}^{\mathrm{BC}}=\Delta^{\mathrm{BC}}(z) \cdot \tilde{\mathcal{H}}^{\mathrm{BC}} \cdot \Delta^{\mathrm{BC}}(z)^{-1} \\
&= \sum_{j=1}^{N}\left(z_{j} \frac{\partial}{\partial z_{j}}\right)^{2}-2 \beta(\beta-1) \sum_{1 \leqslant j<k \leqslant N}\left(\frac{z_{j} z_{k}}{\left(z_{j}-z_{k}\right)^{2}}+\frac{z_{j} z_{k}}{\left(z_{j} z_{k}-1\right)^{2}}\right) \\
&-\sum_{j=1}^{N}\left(\alpha(2 \bar{\alpha}+\alpha-1) \frac{z_{j}}{\left(z_{j}-1\right)^{2}}+4 \bar{\alpha}(\bar{\alpha}-1) \frac{z_{j}^{2}}{\left(z_{j}^{2}-1\right)^{2}}\right)
\end{aligned}
\end{align*}
$$

where $\Delta^{\mathrm{A}, \mathrm{BC}}(z)$ are the ground-state eigenfunctions for the A-type and BC-type CSM model, respectively,
$\Delta^{\mathrm{A}}(z)=\prod_{j=1}^{N} z_{j}^{-\beta(N-1)} \cdot \prod_{1 \leqslant j<k \leqslant N}\left(z_{j}-z_{k}\right)^{2 \beta}$
$\Delta^{\mathrm{BC}}(z)=\prod_{j=1}^{N} z_{j}^{-\beta(N-1)-\bar{\alpha}-\alpha}\left(z_{j}-1\right)^{2 \alpha}\left(z_{j}^{2}-1\right)^{\bar{\alpha}} . \prod_{1 \leqslant j<k \leqslant N}\left(z_{j}-z_{k}\right)^{\beta}\left(z_{j} z_{k}-1\right)^{\beta}$.
In this sense the Macdonald operators \hat{M}_{1} and \hat{W}_{1} may be considered as the Hamiltonians for the 'relativistic CSM model' (the difference analogue of the CSM model) [24].

We have clarified the role of the affine Hecke algebra in the Macdonald polynomials and the Calogero-Sutherland-Moser models, both of which are associated with the root system.

Using the infinite-dimensional representation for solutions of the YBE and the RE, we have constructed a degenerate affine Hecke algebra of type A and type BC. Although our operators could be viewed as the Macdonald operators associated with the root system of type A and type BC, BC-type operators include only three parameters; the Macdonald-Koornwinder operator includes five arbitrary parameters in general. In [4] the Askey-Wilson polynomial with five parameters is constructed by use of the affine Hecke algebra. An \hat{r}-operator is used, which unifies our two solutions (8) and satisfies identities (9),

$$
\begin{equation*}
\hat{r}_{j}^{\text {Noumi }}=\frac{\left(a-a^{-1}\right)+\left(b-b^{-1}\right) z_{j}}{1-z_{j}^{2}}+\frac{a^{-1}-\left(b-b^{-1}\right) z_{j}-a z_{j}^{2}}{1-z_{j}^{2}} \hat{t} \tag{29}
\end{equation*}
$$

It might be possible to unify two elliptic solutions of the reflection equation [12], and to construct the elliptic analogue of the Macdonald-Koornwinder operator [25].

The author would like to thank Miki Wadati for kind interest in this work. He is also grateful to M Noumi for sending [4] prior to publication. This work is supported in part by Grants-in-Aid from the Ministry of Education, Science and Culture, Japan.

References

[1] Macdonald I G 1995 Symmetric Functions and Hall Polynomials 2nd edn (Oxford: Oxford University Press)
[2] Gasper G and Rahman M 1990 Basic Hypergeometric Series (Cambridge: Cambridge University Press)
[3] Cherednik I 1992 Duke Math. J. (IMRN) 65171
[4] Noumi M 1995 RIMS Kokyuroku 91944 (in Japanese)
[5] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[6] Gaudin M 1983 La Fonction d'one de Bethe (Paris: Masson)
[7] Faddeev L D 1995 Int. J. Mod. Phys. A 101845
[8] Sklyanin E K 1988 J. Phys. A: Math. Gen. 212375
[9] Gaudin M 1988 J. Physique 491857
[10] Shibukawa Y and Ueno K 1992 Lett. Math. Phys. 25239
[11] Pasquier V 1994 Integrable Models and Strings (Lecture Notes in Physics 436) ed A Alekseev et al (Berlin: Springer)
[12] Hikami K 1995 Phys. Lett. 205A 167
[13] Hikami K 1996 J. Phys. Soc. Japan 65394
[14] Frenkel I and Reshetikhin N 1992 Commun. Math. Phys. 1461
[15] Olshanetski M A and Perelomov A M 1983 Phys. Rep. 94313
[16] Freund P G O and Zabrodin A V 1992 Commun. Math. Phys. 147277
[17] Hikami K 1995 J. Phys. Soc. Japan 641047
[18] Koornwinder T H 1992 Contemp. Math. 138189
[19] Gorsky A S and Zabrodin A V 1993 J. Phys. A: Math. Gen. 26 L635
[20] Pasquier V 1996 Nucl. Phys. B (Proc. Suppl.) A 4562
[21] Bernard D, Gaudin M, Haldane F D M and Pasquier V 1993 J. Phys. A: Math. Gen. 265219
[22] Bernard D, Pasquier V and Serban D 1995 Europhys. Lett. 30301
[23] Yamamoto T, Kawakami N and Yang S K 1996 J. Phys. A: Math. Gen. 29317
[24] Ruijsenaars S N M 1987 Commun. Math. Phys. 110191
[25] Hikami K J. Phys. A: Math. Gen. to appear
Hikami K and Wadati M in preparation

[^0]: \dagger E-mail: hikami@phys.s.u-tokyo.ac.jp

